

LearnMathFastBooks.com

Placement Test

1. 8

+3

2. $\begin{array}{r}10 \\ -\quad 7 \\ \hline\end{array}$
3. 17
$+5$
4. $18+7=$
5. $18-9=$
6. $18+24=$
7. 142

-59

8. 4006 - 287
9. $6,247.8$

- 368.24

10. 63
48
77.2
53
$+19$
11. $200 \times 40=$
12. $23.5 \times 17.003=$

Look at the number below and then answer the following questions about place value.

$$
10,759,863,422
$$

15. Which number is in the Ten Thousand column? \qquad
Which number is in the One Hundred Million column? \qquad
Which column has a zero in it? \qquad -
16. $\frac{2}{3}-\frac{2}{6}=$
17. $\frac{4}{7} \div \frac{3}{4}=$
18. $3 \frac{9}{24}+2 \frac{8}{12}=$
19. $6 \frac{1}{3} \times 2 \frac{1}{2}=$
20. How much is 20% of 870 ? \qquad
21. Write 38% as a decimal number. \qquad
22. Write 45 cents as a fraction. \qquad
23. $-8+(-15)=$

LearnMathFastBooks.com
Placement Test page 2
Answer the following questions. Reduce your answers down to the smallest possible denominator.
24. $-\frac{6}{8} \div 3=$
25. $-4 \frac{3}{8} \times-2 \frac{1}{7}=$
26. Circle the bigger fraction. $\frac{32}{45}$ or $\frac{2}{3}$

Solve for x or solve the equation.
27. $x-12=144$
28. $3 x=24$
29. $5^{3}+\sqrt{121}=$
30. $x^{2}=64$
31. $\left(3^{2}-3\right)+8 \times 4 \div 2-1=$
32. $2 a b+3 a b=$
33. $7 a^{2}+a^{2}-2 a=$
34. $2 x y \times 8 x y z=$
35. $3 a(4 a+9 c)=$

Answer the following questions about a line with coordinates $(3,6)$ and $(6,8)$.
36. What is the slope of that line? \qquad
37. What is the y-intercept of that line? \qquad
38. Write a linear equation for that line. \qquad
39. If you were to graph that line, would the line go uphill, downhill, flat or vertical?
40. Find the circumference and the area of the circle below. $A=$ \qquad $C=$ \qquad

41. Name the relationship between the two lines. Are they parallel, perpendicular, perimeter or neither.

42. What is the length of the hypotenuse in the right triangle below? \qquad

43. Name the three special triangles below.

\qquad

Use the Pythagorean Theorem to solve for x in the two right triangles below.

45.

