CHAPTER 1

Lines and Angles

Name: \qquad Date: \qquad

WORKSHEET 4-1

1. Draw a line with two points creating a line segment $A B$.
2. Draw an angle and label the points as $C D E$ with point D being the vertex.
3. Draw ray KL with K as the endpoint.
4. Name each picture as a line, a line segment, a ray, or an angle.

A. \qquad B. \qquad C. \qquad D. \qquad
5. Using the little symbols we just learned: $\longleftrightarrow, \rightarrow$, - , and \angle, write the short name for each of the following.
a. Line $A B$ \qquad
b. Line segment $C D$ \qquad
c. Ray $B C$ \qquad
d. Angle EFG \qquad

WORKSHEET 4-2

Look at the drawing below and then answer the questions.

1. Is angle ABD obtuse or acute?
2. Is angle $D B C$ obtuse or acute? \qquad
3. What is the measurement of angle $A B D$? \qquad
4. What is the measurement of angle $D B C$? \qquad
5. Look at angle ABD. Which letter is the vertex?
6. Name the angle that is adjacent to angle DBC. \qquad

CHAPTER 1 REVIEW TEST

All questions will be about this drawing:

1. Is angle B an obtuse angle or an acute angle? \qquad
2. Is angle C an obtuse angle or an acute angle? \qquad
3. If angle A is 50°, what size are angles B, C, and D ? \qquad
4. Are angles A and D opposite or adjacent angles?
5. Are angles A and B opposite or adjacent angles? \qquad
6. If angle D is 129°, what size is angle B ? \qquad
7. If angle D is 129°, what size is angle C ? \qquad
8. Why are there arrows on the ends of the lines?
9. Draw a picture to portray each of the following geometric terms.

A Line segment
A Ray

An angle with a vertex Q

Any Angle

Chapter 1 Review Test (Continued)

Draw a picture to portray each of the following geometric terms.

A Right angle

An Obtuse angle

An Acute angle

Two opposite angles

Two adjacent angles

CHAPTER 2

Triangles, Squares and Polygons

WORKSHEET 4-4

1. Name each type of special triangle pictured below.

A. \qquad B. \qquad C. \qquad
2. Below is an isosceles triangle. Answer the following questions.

A. Angle B is 70°. What is the measurement of angle A ? \qquad
B. Side $A C$ is $7^{\prime \prime}$. What is the length of side $A B$? \qquad
C. Angle A is 80°. What is the measurement of angle C ? \qquad
3. Below is an equilateral triangle. Answer the following questions.

A. What is the measurement of angle B ? \qquad
B. Side $A C$ is 10^{\prime}. How long is side $B C$?
C. What is the total measurement of angles A, B, and C together?

WORKSHEET 4-4 page 2

4. Below is a right triangle. Answer the following questions.

A. What is the measurement of angle B ? \qquad
B. If angle C is 45°, what is the measurement of angle A ? \qquad
C. If angle A is 50°, what is the measurement of angle C ? \qquad
5. All triangles have three angles. If you measure all three angles and add them together, what will they total? \qquad
6. I'm thinking of a triangle. Two of the angles are 60°. What kind of triangle is it? \qquad
7. I have a right triangle. One of the angles measures 50°. What are the measurements of the other two angles? \qquad
\qquad
8. I have a triangle. The measurements of the angles are $30^{\circ}, 60^{\circ}$, and 90°. What type of triangle do I have? \qquad
9. What does it take for a triangle to be called an equilateral triangle?
10. What does it take for a triangle to be called an isosceles triangle?
11. Is it possible for one triangle to be all three special triangles?

WORKSHEET 4-5

1. Think of all the numbers between 1 and 20 . Which number looks like two parallel lines? \qquad
2. Which two letters of the alphabet look like perpendicular lines? \qquad
3. I have a shape with four 90° angles. Two of the four sides measure $2^{\prime \prime}$, the other two sides measure $4^{\prime \prime}$. What kind of shape do I have?
4. Which set of lines are parallel to each other? Circle the letter.

5. Look at A, B, and C above in problem number 4. Which set of lines are perpendicular to each other? \qquad
6. Of the three angles below, which one is most likely a 90-degree angle?

7. Which shape is a square?

A

B

C
8. How many dimensions does a plane figure have? \qquad

WORKSHEET 4-6

1. Use $A=b h$ to find the area of this square.

2. Find the area of this rectangle.

3. Your back yard measures 30 feet $x 40$ feet. What is the area of the back yard? \qquad
4. What is the area of a 9 -foot-tall square?
5. My Geometry book measures $11^{\prime \prime} \times 8^{\prime \prime}$. How many square inches are on the front cover? \qquad
6. I'm going to put tile on the floor. Each tile is one square foot. The floor measures 20 ' on one side and 24^{\prime} on the other side. How many tiles will I need to cover the floor?

WORKSHEET 4-7

Find the area of the following triangles using the formula $A=\frac{1}{2} \mathrm{bh}$.
1.

2.

3.

4. Look at triangle $A B C$ and then answer the questions on the next page. You won't need a protractor or a ruler. All you need to know is that it is an equilateral triangle and side $A C=4^{\prime \prime}$.

a. What is the length of side $B C$? \qquad
b. What is the size of angle A ? \qquad
c. What is the length of side $A B$? \qquad
d. What is the size of angle C ? \qquad
5. Look at triangle DEF and answer the following questions. You won't need a protractor or a ruler. All you need to know is that it is a right triangle.

a. What size is angle E ? \qquad
b. Angle D is 45°. What size is angle F ? \qquad
c. What does the little box in angle E mean? \qquad
6. I'm going to paint a triangular shape on the wall. The triangle will be 8 feet tall. The base of the triangle will be 5 feet. How many square feet of wall will I be painting? \qquad
7. If I fold any square in half diagonally, what two new shapes will I get?
\qquad

Check your answers and see how you did. If you got any of the answers wrong, go back and find what you missed. Once you understand everything on this worksheet, you are ready to move on.

WORKSHEET 4-8

Name each polygon.
1.

2.

3.

4. \qquad

5.

7.

8. \qquad

CHAPTER 2 REVIEW TEST

Name the following shapes:
1.

2.

3.

Find the area of the following shapes:
4.

6.

5. \qquad

7. \qquad

8. Name the three special triangles. \qquad _,
\qquad
9. Which of the three special triangles has three 60° angles?
\qquad
10. Which of the three special triangles has at least two equal sides?
11. Which of the three special triangles has a 90° angle. \qquad
12. What is the total of all three angles in an isosceles triangle? \qquad
13. Brianna drew a plane figure on a piece of paper. The figure has four angles with opposite sides being parallel. The top and bottom are both $6^{\prime \prime}$ long. The two sides are both 8 " long. What type of shape did Brianna draw?

CHAPTER 3

Pythagoras

WORKSHEET 4-9

1. Use the Pythagorean Theorem to find the length of this hypotenuse.

2. What type of triangle has a hypotenuse?
3. Triangle $A B C$ is an isosceles triangle. What is the length of side $A B$?

4. Find the length of the hypotenuse for triangles A, B, and C, below.

\qquad

\qquad

CHAPTER 3 REVIEW TEST

1. Find the length of the hypotenuse.

2. Find the length of the hypotenuse.

3. Find the diagonal length of this rectangle.

Chapter 3 Review Test page 2

4. You are told to draw chalk lines on the ground for a football game. The rectangle for the football game is 100 yards long by 25 yards wide. Find the diagonal of this rectangle in order to have a perfectly "square" rectangle. What is the diagonal measurement of the football field? \qquad

5. Write the Pythagorean Theorem. \qquad
6. What is the missing measurement? \qquad

If you understand everything up to this point, you are ready to learn about circles. If you are confused by anything we've learned so far, please go back and read this section again until it is simple.

CHAPTER 4

Circles

WORKSHEET 4-11

Use $C=d \pi$ (seedy pie) to find the circumference of each circle.

1.
2.
3.
4.
5. Which Greek symbol do we use to represent 3.14 inches? \qquad
6. Mick cut down a tree with a chainsaw. The stump measured 6.28 feet around. What was the diameter of the tree he cut down? \qquad
7. Josh bought a round swimming pool. It measures 15^{\prime} from one side to the other side. Josh wants to put a string of Christmas lights around the pool. How long should the string of lights be? \qquad
8. Amanda drove over the bridge from point A to point B. It was a 1 mile drive across the bridge. The circle below represents a lake. How long would she have driven, if she had gone around the lake from point A to point B?

WORKSHEET 4-12

1. Find the circumference of a circle with a diameter of 3". Remember to use "seedy pie". \qquad

2. Find the area of a circle with a diameter of 8". Use "A pie are squared" to figure out the answer and be sure your answer has "inches squared" at the end. \qquad

3. Answer this question immediately, don't do any math, just figure it out logically in your head. What is the circumference of a circle whose diameter is one inch? \qquad
4. What is the radius of a circle that has a circumference of 3.14 inches? \qquad

WORKSHEET 4-13

1. What is the area of this shape?

2. What is the area of this shape?

3. Find the area of the purple and white shape below. \qquad

WORKSHEET 4-14

1. Find the perimeter of the following three shapes: a square, a right triangle and a rectangle.

A. \qquad
B. \qquad C. \qquad
2. Find the circumference of this circle.

3. Find the perimeter of a square with $3 / 8^{\prime \prime}$ sides. \qquad

If you fully understand the meaning of area, perimeter, and circumference, then you are ready to learn about volume. If you need more practice, look for more worksheets on our website, under the Existing Customers tab.

WORKSHEET 4-15

Find the volume of these shapes.

3. How much water can this fish tank hold? Your answer should be in cubic feet.

WORKSHEET 4-16

Find the volume of the following spheres.

1. A basketball with a radius of $7^{\prime \prime}$. \qquad
2. A globe with a radius of $10^{\prime \prime}$.
3. A bouncy ball with a radius of $\frac{1}{2}$ inch. \qquad

Find the volume of the following rectangular prisms.
4. A box that has a base of 4 ", stands $5^{\prime \prime}$ tall, and has a width of 7".
\qquad
5. A treasure chest that is 3^{\prime} wide, 2^{\prime} tall, and 2^{\prime} deep. \qquad
6. A stick of butter that measures $1^{\prime \prime}$ tall, $2.25^{\prime \prime}$ long, and $1-1 / 8^{\prime \prime}$ wide.
\qquad
7. What is a space figure? \qquad
8. What is the difference between a cube and a square?
\qquad
9. What is the difference between a circle and a sphere?
10. What is the difference between a cube and a rectangular prism?

CHAPTER 4 REVIEW TEST

Find the Circumference of the following circles.

1. A circle with a diameter of 10 yards. \qquad
2. A circle with a radius of 7 miles. \qquad

Find the Area of the following circles.
3. A circle with a radius of 3 feet. \qquad
4. A circle with a diameter of 12 inches. \qquad

Find the area of the following shapes.

6. Find the perimeter of the shape above. \qquad
Find the volume of the following space figures. Vol. of sphere $=\frac{4}{3} \pi r^{3}$
7. \qquad

20'
8. \qquad

CHAPTER 4

The Metric System

WORKSHEET 4-17

Fill in the blanks with the appropriate unit of measurement. Answer with meters, liters, or grams.

1. The golf ball traveled 200 \qquad .
2. The letter only weighs 20 \qquad so one stamp is enough postage.
3. A bottle of water measures $1 / 2$ \qquad .
4. How many \qquad does a penny weigh?
5. How many \qquad of gas did you put in your car?
6. It took me almost an hour to walk 3000 \qquad .
7. Read the back of the box. How many \qquad of sugar are in this snack?
8. A bag of chips holds 340 \qquad of chips.
9. The fish tank broke and spilt \qquad and \qquad of water on the floor.
10. Did you see Mick jump? He must have traveled at least three
\qquad -.

Once you feel confident that you know the difference between a meter, a liter, and a gram, you are ready to continue.

WORKSHEET 4-18

1. One paper clip weighs about one gram. If I break that paper clip into 1000 equal pieces, each piece will weigh one \qquad .
2. I bought one liter of pop. I gave 1000 people a few drops each. Each person received one \qquad of pop.
3. I'm trying to measure how thin my credit card is. It is hard to measure something so small, but I know if I stack up 1000 credit cards, it will stand one meter tall. What is the thickness of just one credit card? \qquad .
4. Sarah weighed herself. She weighed over 200 \qquad .
5. Jack filled up the swimming pool with over 3 \qquad of water.
6. The pharmacist said these pills have 100 \qquad of vitamin C.
7. I stacked up 10 dimes. The whole stack measured 10 \qquad tall.
8. The speed limit on the highway is 80 \qquad per hour here.
9. The $10-\mathrm{K}$ race was 10 \qquad long.
10. The recipe calls for 5 \qquad of oil.
11. That bottle has 120 \qquad of perfume in it.
12. 1 gram $\times 1000=1$ \qquad ,
13. 1 gram $\div 1000=1$ \qquad .

WORKSHEET 4-19

Use one of the words from the list below to complete these sentences.

Kilogram	$=1000$ grams	Centigram $=1 / 100$ of a gram
Kilometer $=1000$ meters	Centimeter $=1 / 100$ of a meter Kiloliter$=1000$ liters	Centiliter $=1 / 100$ of a liter
Milligram $=1 / 1000$ of a gram		
Millimeter $=1 / 1000$ of a meter		
Milliliter $=1 / 1000$ of a liter		

1. I got a splinter in my hand. It was about 1 \qquad wide.
2. I drove to the store. It was about 3 \qquad away.
3. That fish tank is huge. It must have nearly 100 \qquad of water in it.
4. My doctor said this pill has 500 \qquad of aspirin in it.
5. A small bird feather weighs approximately 7 \qquad ـ.
6. I went on a diet and I lost over 9 \qquad .
7. I put 1 spoonful of water in the dough, that's about 1 \qquad .
8. The diameter of a marble is about 1 \qquad .
9. A bottle of eye drops holds 30 milliliters, that's the same as 3
\qquad .
10. I ran 5 \qquad in 1 hour.

WORKSHEET 4-20

Write the abbreviation for each of the following metric units.

1. Meter \qquad
2. Centimeter \qquad
3. Liter \qquad
4. Centiliter \qquad
5. Kilogram \qquad
6. Gram \qquad
7. Milligram \qquad
8. Kilometer \qquad
9. Milliliter \qquad
10. Kiloliter \qquad

CHAPTER 5 REVIEW TEST

1. How many centimeters are in a decimeter? \qquad
2. How many decimeters are in one meter? \qquad
3. How many millimeters are in a centimeter? \qquad
4. How many centimeters are in a meter? \qquad
5. What measurement is closest to the width of a pencil lead?
$1 \mathrm{~mm} \quad 1 \mathrm{~cm} \quad 1 \mathrm{dm} \quad 1 \mathrm{~m}$
6. What measurement is closest to the length of a new pencil?
2 mm
2 cm
2 dm
2 m
7. What measurement is closest to the height of a door?
2 mm
2 cm
2 dm
2 m
8. What measurement is most likely the size of a chocolate chip cookie?
$7 \mathrm{~mm} \quad 7 \mathrm{~cm} \quad 7 \mathrm{dm} \quad 7 \mathrm{~m}$
9. What does the prefix Kilo mean?
10. What does the prefix Milli mean?
11. Which is most likely one mL ?

A glass of milk Volume of a fish tank 3 rain drops
12. Which is heavier?

3 grams 9 centigrams 1 kilogram

Chapter 5 Review Test page 2

13. In the United States, we use feet for our base unit to measure length. What is the base unit used in the Metric System to measure length? \qquad
14. Your protractor has a one-decimeter ruler on it. How many millimeters are in one decimeter?
15. Write the abbreviations for the following metric units.

Kilometer \qquad
Liter
Hectometer \qquad
Dekagram \qquad
Meter \qquad
Deciliter \qquad
Centimeter \qquad
Milligram \qquad
Gram \qquad
Milliliter \qquad

If you have completed this book and you feel you are ready to take the final test, then you may begin. If you feel confused, even a little bit, you should go back and read this book again. It won't take long to read it a second time.

FINAL GEOMETRY TEST

1. What is the name of the geometric drawing below? \qquad

2. What is the short name for this geometric drawing? \qquad

Look at the drawing below and then answer the following questions.

3. $\angle E B C$ is a right angle. What is the measurement of angle EBA? \qquad
4. Is angle $D B C$ obtuse or acute? \qquad
5. Is angle FBC obtuse or acute? \qquad
6. Angle $E B C$ is a right angle. If angle EBD is 25°, then what is the measurement of angle $A B D$? \qquad
7. What angle is adjacent to $A B D$? \qquad
8. If angle $F B C$ is 45° what is the measurement of angle $A B F$? \qquad
9. What angle is adjacent to angle FBC? \qquad
10. If angle $A B D$ is 70° what is the measurement of angle $D B E$? \qquad

Final Geometry Test page 2

Look at the picture below and then answer the following questions.

11. What angle is opposite angle AEC? \qquad
12. What is the vertex of angle $D E B$? \qquad
13. What angle is opposite angle CEB? \qquad
14. Name an angle that is adjacent to angle AED. \qquad
15. If \angle AEC $=15^{\circ}$, what is the measurement of $\angle D E B$? \qquad
16. If $\angle A E C=15^{\circ}$, what is the measurement of $\angle C E B$? \qquad

Name each type of special triangle.

18.

19.

Final Geometry Test page 3

20. Look at triangle $A B C$ below. If $\angle C=30^{\circ}$, what is the measurement of angle A ? \qquad

21. Look at triangle $A B C$ below. It is an Isosceles triangle. If angle $A=$ 40°, what are the measurements of angles B and C ? \qquad

22. Look at triangle $A B C$ below. What is the measurement of angle A ?

Final Geometry Test page 4

23. Find the area of this triangle. \qquad

24. Find the area of the rectangle.
\square
25. Find the area AND the circumference of this circle.

Area $=$ \qquad , Circumference $=$ \qquad -

Final Geometry Test page 5

26. Find the area AND the circumference of this circle.

27. Find the perimeter of the shapes below. $A=$ \qquad $B=$ \qquad

28. Which set of lines are parallel to each other?

A.

B.

C.

Final Geometry Test page 6

29. Which set of lines are perpendicular to each other? \qquad

A.

B.

C.
30. Which side of this triangle is the hypotenuse, A, B, or C ? \qquad .

Use the Pythagorean Theorem to find the length of the hypotenuse for the following two triangles.
31.

32. \qquad

12^{\prime}

Final Geometry Test page 7

33. What is the diagonal length of this square? Your answer will be the square root of something. \qquad

34. Find the area of this oddball shape. \qquad

35. Find the volume of the cube below.

36. Find the volume of the rectangular prism below. \qquad

Final Geometry Test page 8

37. Use your protractor to find the measurement of the following angles.

38. Who discovered that in a right triangle $a^{2}+b^{2}=c^{2}$? \qquad
39. Find the volume of a sphere with a radius of $7^{\prime \prime}$. Use $V=\frac{4}{3} \pi r^{3}$. You can round your answer down to the nearest hundredth.
40. What is another name for 1000 m in the Metric System? \qquad
41. How many milliliters are in one liter?
42. The shape below has an area of $54 \mathrm{~cm}^{2}$. What is the length of base x ?

43. How many dimensions are on a plane figure? \qquad
44. How many dimensions are on a space figure? \qquad

Final Geometry Test page 9

45. Which metric unit of measurement is closest to the US Standard inch? \qquad
46. Which metric unit of measurement is closest to the US Standard teaspoon? \qquad
47. Which metric unit of measurement is closest to the US Standard yard? \qquad
48. Write the Pythagorean Theorem. \qquad
49. Which side of the triangle below is the hypotenuse? \qquad

50. What is the name of a 3 -sided polygon? \qquad
51. What is the name of a 5 -sided polygon? \qquad
52. Give three names for a 4-sided polygon. \qquad ,
53. How many sides does an octagon have? \qquad
54. How many sides does a hexagon have? \qquad
55. Is a circle a polygon? \qquad
56. What formula has the nickname Seedy Pie? What do you use this formula for? \qquad
\qquad
57. What formula has the nickname A Pie Are Squared? What do you use this formula for? \qquad
